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Abstract

The multivariate adaptive regression splines (MARS) methodology was applied to build quantitative structure—retention relationships
(QSRRs). The response (dependent variable) in the MARS models consisted of the logarithms of the extrapolated retention kagtofs (log
83 structurally diverse drugs on a Unisphere PBD column, using isocratic elutions at pH 11.7. A set of 266 molecular descriptors was used as
predictor (independent) variables in the MARS model building. The optimal MARS model uses 34 basis functions to describe the retention
and has acceptable predictive properties for new objects. The molecular descriptors included in the model describe hydrophobicity, molecular
size, complexity, shape and polarisability. Some additional MARS models were created using alternative strategies. These include models
with log P as the single predictor and models obtained with only the three most important molecular descriptors. The use of classification and
regression trees (CART) as feature selection technique for predictor variables used in the MARS model was also investigated. Further, it is
also studied whether allowing quadratic terms instead of interaction terms might lead to better MARS models.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction aration of mixtures in a given chromatographic system. Sev-
eral approaches for retention prediction in RPLC have been
Reversed-phase high performance liquid chromatographyinvestigated, among which quantitative structure—retention
(RPLC) is one of the most frequently used techniques to sep-relationships (QSRRs) are the most pop{®3r In QSRR, a
arate pharmaceutical mixtures. The enormous variety of sta-model is built, in which the retention on a given chromato-
tionary phases combined with a range of possible mobile graphic system is described as a function of solute (molecu-
phase compositions makes RPLC suited for almost any sepaiar) descriptors. The QSRR models described in the literature
ration. However, the selection of an appropriate starting point, usually apply multiple linear regression (MLR) methods, of-
i.e. the initially selected chromatographic system, for further ten combined with genetic algorithms for feature selection
method development has become a crucial time-consuming[3-5]. Other frequently used approaches include artificial
step in RPLC method development, since in general a trial- neural network$5,6] and partial least squares (PL[3].
and-error approach is followdd]. Multivariate adaptive regression splines (MARS) is a
The building of retention prediction models may open the multivariate non-parametric regression procedure, which
possibility to predict the retention and consequently the sep-was proposed by Friedmé8]. The use of the MARS method
in chemical studies was introduced by De Veaux ef4l.
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Cong et al[10] and Lahsen et a[11]. Since in QSAR and  in a weighted sum to define the global model (Eq). This
QSRR, similar models are built to describe either biological model often contains too many basis functions, which leads
activity or chromatographic retention, MARS might also be to overfitting. Therefore, the constructive phase is followed
useful to construct QSRR models. The use of MARS to build by a pruning phase, in which some basis functions of the
QSRR models may show some advantages compared to th@verfitting model are deleted. This leads to a sequence of
more traditionally used techniques like MLR and neural consecutively smaller MARS models, from which the opti-
nets. Probably, the largest advantage is the fact that MARSmal one is selected in a third step.

is able to describe a given response (e.g. chromatographic In the first step, a model is created by stepwise adding
retention) starting from a large number of predictors (e.g. basis functions. Each basis function covers a given domain
molecular descriptors) from which the best are automatically of the response variable. The basis functions in MARS con-
selected. Compared to neural nets and PLS, the MARSsist either of one single spline function or of the product
models are easier to interpret, since the original variables canof two (or more) spline functions for different predictors.
be directly found in the resulting model and even interactions The spline functions in MARS are piecewise polynomials,
between the variables are indicated. Thus, MARS is ablei.e. left-sided (Eq.{(2)) and right-sided (Eq(3)) truncated

to build flexible models without the disadvantages of the functions.

more ‘black-box’ methods, as PLS and neural networks are

sometimes called. b= 1) = [—(x - 0 = {(t —x)4, ifx< t_ @
The aim of this study was to evaluate the use of the 0, otherwise

MARS methodology in a QSRR context. MARS is ap-

plied to describe the chromatographic retention, on a given b — 1) = [+ — 0] = {(x -0, ifx>t1t 3)

chromatographic system, as a function of a set of molec- "¢ - 7)o, otherwise

ular descriptors. Additionally, the use of classification and
regression trees (CART[L2] for feature selection of the  wheret is called the knot locatior;, (x — 1) andb;;(x —1)
predictors (i.e. molecular descriptors), prior to the applica- are spline functions describing the regions to the left and
tion of MARS is studied. It was also researched whether the right of the giver; q indicates the power (>0) to which
the introduction of quadratic terms instead of interactions the spline is raised; the subscript “+” indicates a value of
may lead to better models. A physicochemical explana- zero for negative values of the argument. An example of the
tion of the descriptors selected by MARS is also given graphical representation of a spline function can be found
and the resulting MARS models are compared with the in Section4.1 The first step consists of a “two-at-a-time”
CART model obtained in a previous study on the same forward stepwise procedure which selects the best pairs of
datasef13]. spline functions in order to improve the model. Each pair
contains one left-sided and one right-sided truncated func-
tion defined by a given knot location. Thus, initially the best

2. Theory basis functions are added two by two in order to improve the
description of the training data. The algorithm used evaluates
2.1. Multivariate adaptive regression splines all possible predictors, as well as all possible knot locations

for each predictor. The search for the best predictor and knot
The MARS method is a local regression method that useslocation is performed in an iterative way. The predictor (knot
a series of local so-called basis functions to model complex location), which contributes most to the model, is selected
(non-linear) relationshipg8]. The space of the predictors first. Additionally, the algorithm checks at the end of each
is split into several (overlapping) regions in which so-called iteration whether the introduction of an interaction improves
spline functions are fit. The global MARS model then consists the model. While in successive iterations the basis functions
of the weighted sum of the local models: are introduced in the model as single additive components,
u the interactions are expressed in the model as the product of
- two or more basis functions. The order of a MARS model
y=ao+ Z i B (x) (1) indicates the maximum number of basis functions that inter-
m=1 act (e.g. in second-order MARS the interaction order of the
wherey is the predicted responsay the coefficient of the  splines is not higher than two). The iterative building proce-
constant basis functio®y(x) themth basis function, which  dure continues until a user-defined maximum number of basis
may be a single spline function or a product (interaction) of functions Mmax) is included. The value dAimax should be

two (or more) spline functiongy, the coefficient of thenth considerably larger than the optimal model $¥e(typically
basis function antl the number of basis functions included the order of magnitude d¥lyax is twice the expected mag-
into the model. nitude ofM") [8]. This results in a model, which overfits the

Ingeneral, the MARS methodology consists of three steps: response.
first a constructive phase, in which basis functions are intro-  The second step in the MARS methodology consists of a
duced in several regions of the predictors and are combinedpruning step. A “one-at-a-time” backward elimination pro-
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cedure is applied in which the basis functions with the lowest ~ More information about molecular descriptors can be
contribution to the model are excluded. Thus, in this step, the found in[15].

basis functions to be maintained in the final MARS model are

selected from the set of all candidate basis functions, used

in step 1. This pruning usually is based on the generalized 3. Experimental

cross-validation (GCV) criterion, but other approaches exist,

such as-fold cross validatior[8]. The GCV parameter is The chromatographic data used were obtained from Nasal
an adjusted residual sum of squares, in which a penalty foret al. [16] and consisted of the logarithms of the extrap-
the model complexity is incorporated. This criterion is used olated retention factors (Idg,) for 83 basic drugs. The

to avoid an excessive number of spline functions in the final data concern the retention in buffer/methanol mixtures on

model: a Unisphere PBD, a polybutadiene-coated alumina, column
15 a2 at pH 11.7 using isocratic elution. The composition of the
GCV(M) = ,M (4) methanol/aqueous buffer mobile phase ranged from 75:25 to
n (1-C(M)/n) 0:100 (v/v). To compare retentions, they were extrapolated to
0% organic modifief16] and the lodky values thus obtained

wherenis the number of objects studigglithe (experimental)
response for objedt 3; the predicted response for object
andC(M) a complexity penalty function, which is defined as:

are used.

In this study 266 0D, 1D and 2D theoretical descriptors
were used. The |loB values of the substances were obtained
C(M)=M+dM (5) using the on-line interactive LogKow program of the Envi-

ronmental Science Center of Syracuse Research Corporation,
with M the number of non-constant basis functions (i.e. all Syracuse, NY[17,18] For all molecules, the geometrical
terms of Eq(1) excepiap) in the MARS model anda user-  structure was optimised using Hyperchem 6.03 Professional
defined cost for each basis function optimisation. The higher software (Hypercube, Gainesville, FL). Geometry optimisa-
the COSﬂ getS, the more baSiS funCtionS W|” be eXCIUded. In tion was obtained by the m0|ecu|ar mechanics force f|e|d
practicedis increased during the pruning step in order to ob- method (MM+) using the Polak-Ribie coniugate gradient
tain smaller models. Besides its use during the pruning step,algorithm with a RMS gradient of 0.05 kcal/(nol) as stop
the increase in the GCV value caused by removing a variablecriterion. The Cartesian co-ordinates matrices of the atom
from the model is also used to evaluate the importance of thepositions in the m0|ecu|e’ resu'ting from this geometrica'
predictor variables in the final MARS model. representation, were used to calculate the molecular descrip-

Eventually, the selection of the optimal model is per- tors by the Dragon 1.1 softwaf&9]. The following groups
formed in a third step. The selection is based on an eval- of descriptors were calculated: 56 constitutional descriptors
uation of the predictive properties of the different models, [15], 69 topological descriptof@0—24] 20 molecular walk
which often are determined using cross-validation or a new count§25], 21 Galvez topological charge indide$], 96 2D

independent test set. autocorrelationf27—29]and 3 empirical descriptof5]. A
Further details on MARS modelling are given[8)14]. total of 266 descriptors were used.
The MARS models were built using an in-house algo-
2.2. Molecular descriptors rithm, based on the original MARS method from Fried-

man [8], written in Matlab 5.3.1 environment (The Math-

A molecular descriptor can be defined as the result of works, Natick, MA). The extrapolated retention data were
a logical and/or mathematical procedure, which transforms used as response to be modelled and the descriptors as
chemical information encoded within a symbolic represen- predictors.
tation of a molecule into a useful number (theoretical de-
scriptor), or as the result of some standardized experiment
(experimental descriptofl5]. The term “useful” meansthat 4. Results and discussion
the resulting number might contribute to an understanding
of molecular properties and/or can be used in a model to 4.1. The MARS model
predict properties of molecules. In the literature over 6000
descriptors are described, and the number still gfast A A total of 266 molecular descriptors were used as predic-
further classification of theoretical molecular descriptors is tor variables to build MARS models for the prediction of the
based on the dimensionality of the molecular representationextrapolated retention factors (l&g). Since second-order
from which the descriptor is calculatg¢il5]. One can dis- MARS was applied, the basis functions of the models consist
tinguish zero-dimensional (OD), one-dimensional (1D), two- of linear and second-order splin®dax, the criterion to stop
dimensional (2D) and three-dimensional (3D) molecular de- the maximum model building was setto 100. During the prun-
scriptors, which are derived from the chemical formula, a ing step to obtain sequentially smaller models the generalised
substructure list representation, a topological and geometri-cross-validation criterion was alternated with 20-fold cross-
cal representation, respectively. validation. From the set of models with different complexity,



14 R. Put etal. /J. Chromatogr. A 1055 (2004) 11-19

0.8 . T Table 1
List of basis function®; of the MARS model and their coefficients,
07k | B; Definition g
B1 1 —0.114
B> (logP + 4), 0.834
0.61 T Bs (logP — 4). 0.234
Ba (1 — nRO6). 1.964
2 os Bs (NRO6— 1)« 0.837
=T ] Bs (logP — 4), (GATS4p— 2.2340) 0.293
= B; (NRO6— 1),(0.1430— MATS5m), —-1.210
& oal | Bs (NRO6— 1), (MATS5m — 0.1430) —85.34
’ Bog (NRO6— 1),(0.3360— ATS5V). -1197
Bio (1 — nRO6).(0.2220— MATS4e). —2.557
o3l i B11 (1 — nRO6) (MATS4e — 0.2220) —4836
B2 (logP — 4).(X1A — 0.4330) 4.016
Bis (logP — 4).(0.2890— MATS8e). 0.568
0.2 B4 (logP — 4),(MATS8e — 0.2890) 3.803
0 20 ) 40 60 Bis (logP — 4),(—0.0060— MATS7p)s 0.603
Model size Bus (logP — 4),(MATS7p + 0.0060) 1571
Bi7 (2.6770— GATS1p). —1.558
Fig. 1. RMSECYV vs. model complexity: (a) for all predictors; (b) after fea- B4 (GATS1p— 2.6770) —0.734
ture selection by CART. B1o (NRO6— 1)+(ATS4m— 0.2540) 1.711
Bo (logP — 4),(0.0320— JGI5). 8.260
B2 (GATS1p— 2.6770)(1159.8— TPCM). —0.028
B2z (GATS1p— 2.6770)(TPCM — 1159.8) —0.002
the optimal one was selected based on its predictive propertyB2s (nRO6—1),(JGI3— 0.5710) —1.406
estimated using leave-one-out cross-validatiég. 1a shows 2 (2.6770— GATS1p)(0.4520— ATS2m). 1605
- e 25 (2.6770— GATS1p).(ATS2m — 0.4520) 6.313
a plot of the root-mean-squared error of cross-validation g, (0.4170— ATS3m), _5.840
(RMSECV) versus the complexity for the pruned models. B,; (NRO6— 1),(1.3460— GATS7p) —-9.633
The RMSECYV shows a minimum (0.2231) for the model de- Bes (ATS3m— 0.4170) (PJI2— 0.8570) —17.64
fined by 37 basis functions. However, a smaller model was Bze (0.7630— XO0A)+ —6.969
selected as optimal, since itis less complex and shows a comE20 (X0A — 0.7630) ~8209
' : X Ba1 (logP — 4).(ATS5v — 0.3170) 1.676
parable RMSECV (0.2358). This optimal MARS model con- g, (MATSSp + 0.2580) —0.189
tains 34 basis function8(), including the constarg;, which Bas (NRO6— 1)+(MATS5e — 0.0540) —1.391
equals 1 (Eq(6)): B (0.4170— ATS3m),(ATS3e— 1.300). —4439
34
logkw = Y _aiBi (6)
i=1

The basis functions represented By, Bo, .. ., B34 as well

as their coefficients; are given inTable 1 Several inter-
action terms are integrated in the model. The model con-
tains a constarB; (=1) and 10 basis functions that are sin-

gle splines Bz, Bs, B4, Bs, B17, B1s, B2g, B2g, Bap and

B3y2), defined by only one molecular descriptor. The otherba-

sis functions are second-order interactions of two molecular ; 2

properties. &
As an example of a basis function in the model, consider <
Bo:

logP + 4, iflogP> -4

logP +4), =
(log » { 0, otherwise

This means that, when Idg> —4, the second term of Eq.
(6) is 0.8344 (lod® + 4), otherwise it is OKig. 2). Since in
this example the log values exceed the knot value-{#)

-5 0

Log P

10

for all molecules, the basis function is different from zero for Fig. 2. Graphical representation of the second term o{&(=0.8344B,)

all objects.

as a function of logp.
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As an example of an interaction between two molecular indication that the QSRR relationships obtained could be
properties consideBg: meaningful.

(log P — 4)(GATS4p— 2.2340) iflog P > 4and GATS4p> 2.2340

logP — 4), (GATS4p— 2.2340), =
(log )+ P » {O, otherwise

This means that, when |dg)> 4 and GATS4p > 2.2340,

the sixth term of Eq(6) is 0.2933 (log® — 4) (GATS4p The number of six-membered rings (nR06) is a count de-

— 2.2340), otherwise itis 0. scriptor that describes local chemical information in a way
Note that for a given molecule some terms of the model that can be related to both the volume of a molecule and its

of Eq.(6) may equal 0, which means that those terms are not hydrophobicity. These both properties can be related to the

used to describe its retention. molecule’s chromatographic retention.
The descriptors GATS1p, ATS3m and MATSS8p are auto-
4.2. Interpretation of the MARS model correlation descriptors. The GATS1p and the MATS8p both

describe atomic polarisabilities, whereas the Broto-Moreau

Fig. 3gives a graphical representation of the model struc- autocorrelation coefficient of a topological structure of lag 3,
ture, in which six main groups of basis functions can be dis- weighted on the atomic masses (ATS3m) describes the spatial
tinguished. The groups indicated are defined based on thedistribution of the atomic masses in the molecule. However,
predictor variables (i.e. the molecular descriptors) used in the meaning of these descriptors from a practical point of
the basis functions. Each group consists of one or two mainview is not always that evident. These descriptors are more
basis functions and their interactions. The molecular descrip- difficult to interpret directly in QSRR sense, but since they
tors used to differentiate between the six classes are the hy-describe the atomic polarisabilities and the atomic masses,
drophobicity parameter (Idg); the number of six-membered  respectively, their selection could be understood. Polar in-
rings (nR0O6); the Geary autocorrelation coefficient of lag 1, teractions are important in RPLC and the atomic masses are
weighted by the atomic polarisabilities (GATS1p): the Broto- related to the size and complexity of the molecules.
Moreau autocorrelation coefficient of a topological structure ~ The selection of the average connectivity index chi-0
oflag 3, weighted on the atomic masses (ATS3m); the average(X0A) can also be understood since it is a topological de-
connectivity index chi-0 (X0A); and the Moran autocorrela- scriptor which is related to the molecular complexity, i.e. the
tion — lag 8/weighted by atomic polarisabilities (MATS8p) molecular branching properties.
[15,19] Since basis functions may equal O for given objects,  In the first class, eight interactions with |Bgare de-
one can define the size of a class based on the number okcribed, using six different molecular descriptors (GATS4p,
molecules it describes. Thus, a given class only contains X1A, MATS8e, MATS7p, JGI5 and ATS5v). Since GATS4p
those molecules for which one or more of its basis func- and MATS7p both describe atomic polarisabilities, only five
tions are different from zero. The class defined by ATS3m is different types of interactions with Idgcan be distinguished.
the smallest and contains only 65 objects. The other classesThe Geary autocorrelation descriptor GATS4p and the Moran
contain either 77 (the class defined by MATS8p) or all, i.e. autocorrelation descriptor MATS7p describe the spatial auto-
83, objects (the classes defined by RghR06, GATS1p correlation of the atomic polarisabilities. MATS8e describes
and X0A). the autocorrelation of the atomic electronegativities and the

Fig. 4 gives a plot of the importance of the molecular average Randic connectivity index (X1A) describes molecu-
descriptors in the final MARS model, which is evaluated lar branching and complexity. The Galvez topological charge
by the increase in the GCV value caused by removing the index of order 5 (JGI5) is a descriptor proposed to evaluate
considered variables from the model. It can be observedthe global charge transfer in a given molecule.
that the hydrophobic properties (I8 are the most im- In the second class, the interactions of nR06 are with the
portant in the MARS model, followed by nRO6. The con- autocorrelation descriptors (MATS4e, MATS5e, MATS5m,
tribution of MATS5m is much less important, i.e. about ATS5v, ATS4m and GATS7p) describing spatial autocorre-
20% of the importance of l0B. The remaining molecu- lation of atomic electonegativities (MATS4e and MATS5e),
lar descriptors used all have an importance less than 10%atomic masses (MATS5m and ATS4m), atomic van der Waals
of logP. MARS models created with only the most im- volumes (ATS5v) and atomic polarisabilities (GATS7p), re-
portant molecular descriptors dfig. 4 are evaluated in  spectively. Only two molecular descriptors (i.e. ATS2m and
Sectiond.4. TPCM) are selected to interact with GATS1p (class 3). The

The hydrophobicity parameter (I&®) is selected as be- Broto-Moreau autocorrelation coefficient of a topological
ing the most important parameter as may be expected sincestructure of lag 2, weighted by the atomic masses (ATS2m)
hydrophobic interactions are the most important mecha- describes the spatial distribution of the atomic mass. The total
nisms to determine retention in reversed-phase liquid chro- multiple path count (TPCM) is proposed to describe the com-
matography[1]. The fact that the MARS method selects plexity of a molecule. Also 2 interactions can be observed
logP out of more than 250 molecular descriptors, is an with ATS3m (i.e. PJI2 and ATS3e) (class 4). The 2D Petit-
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class 1

(log P-4),
(log P-4). (X1A-0.4330),
(ATS5v-0.3170),.
(log P-4),
(0.2890-MATS8e),
(log P+4),

\

(log P-4),
(0.0320-JGI5),

(log P-4),
(MATS8e-0.2890),
(log P-4),
(-0.0060-MATS7p).,

(log P-4),

(MATS7p+0.0060),

(GATS4p-2.2340),

(GATS1p-2.6770),
(TPCM-1159.8).

(2.6770-GATS1p)
(0.4520-ATS2m),
(2.6770-GATS1p),
(ATS2m-0.4520). \
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(1-nR06), (1-nR06),
(0.2220-MATS4e), J| (MATS4e-0.2220),

M(O,M}O-MA']‘SSm)]

1 1
1 1
1 1
1 1
1 1
1 1
: ((nR0O6-1), (MATS5m-0.1430).) :
: \(nko(,.l),(o,mo-ATSSv). ) :
1 {(R06-1), 0G13-0.5710), ] 1
1 1
" (nROG-1), (ATS4m-0.2540), ] |
: (nR06-1), (1.3460-GATSTp), :
1 (nR0G-1), (MATS5¢-0.0540), ) |
1 1

.l (0.7630-X0A), K
! I class 5
Ll (X0A-0.7630), :

(log P

2.

-

}\ (GATS1p-2.6770),
V (2.6770-GATS1p), |H

Fig. 3. Representation of the MARS model with the six classes of the basis functions.

jean shape index (PJI2), also called graph-theoretical shapeBroto-Moreau autocorrelation coefficient of a topological
coefficient, is proposed to describe the topological aniso- structure of lag 3, weighted on the atomic electronegativities
metry. This molecular shape descriptor describes the (ATS3e) describes the spatial distribution of the atomic
degree of deviation from a perfect cyclic topology. The electronegativities in the molecule.

Finally the two last classes, defined by the average connec-
tivity index chi-0 (X0A) and by the Moran autocorrelatien

log P
nR06
MATS5m

Fig. 4. Relative importance of the molecular descriptors selected in the

MARS model.

ATS5v
GATSIp
MATSS8e

lag 8, weighted by atomic polarisabilities (MATS8p) do not
contain any interactions. MATS8p describes the spatial auto-
correlation of the atomic polarisabilities and XOA describes
the molecular branching of a molecule.

It can be concluded that the molecular properties selected
to interact with the most important parameters of the model
are not very easy to interpret, which often is intrinsic to their
nature. However, they always are related to molecular prop-
erties that are important in RPLC such as molecular size,
complexity and shape, polarisability and electronegativity.

4.3. Prediction properties of the MARS model compared
to CART and MLR models

In order to evaluate the model, the retention of each

S =23 £ 2 & 58 . : , y
B A < s R L2 = molecule is predicted twice: once as part of the training set
§ =3 < 3 < and once it is selected as a test object in leave-one-out cross-

validation. The training set contains all 83 molecules and
their retention is described using the model of E&). Us-
ing leave-one-out cross-validation each molecule is predicted
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wm
—_

Q logP<2.47 |
4t 4 I Ill
[}
Hy>0.636 TPC<633
B 3t T ]
2 2 3
2
=20 |
=™
= R 6 7 4 5
3z -0.316 0.667 1.81 3.42
~ (14) 17 (24) (28)
0 4
Fig. 6. The CART model obtained if13] on the dataset used (Hy: hy-
al @ X8 i drophilic factor; TPC: total path count).
) L A . A ) L
2 -1 0 1 2 3 4 5
Retention Observed representing hydrophilicity and the “total path count” (TPC)

[31], related to the molecular size.
Fig. 5 Predicted versus ok_)served retention for all obj:ect_s, once using the  Besides these molecular descriptors, CART also provides
training set &) and once using leave-one-out cross validatio).( lists of other important, so called, primary and surrogate vari-
ables[12,13] The latter can be used when missing values
occur in the splitting variables.
once as atest objectin a MARS model where the coefficients ~ All molecular descriptors selected in the MARS model,
are determined based on the remaining 82 molecules. with the exception of nR06, JGI5 and PJI2, were also se-
The model of Eq(6) describes the training set very well. lected by CART as either primary or surrogate variables. The
A low value of the residual sum of squares (RSS =0.1273) is log P is the main molecular descriptor both in MARS and
obtained, the correlation coefficient is 0.9967 &fdequals CART. The autocorrelation descriptors, frequently selected
0.994. The predictive properties of the MARS model, eval- by MARS were also found as surrogate and primary variables
uated using leave-one-out cross validation are also acceptin the CART model.
able (RMSECV = 0.2358 anR? = 0.978).Fig. 5 shows a The predictions obtained by the CART model were less
plot of the predicted versus the observed retention for both good than with MARS since CART is only able to differen-
the training data and the test set. From a practical point of tiate between classes with low, intermediate and high reten-
view these predictive values (for the test set) can be inter- tion, whereas the MARS model is a real regression model.
preted as a mean error equal to 13% of the real retentionMoreover, the prediction power of the CART model could
(log ). only be evaluated as a misclassification rate. However, when
In a previous studfl 3], classification and regression trees trying to link the selected theoretical descriptors with reten-
[12] were used to build regression trees for the retention pre-tion in a chromatographic system, it can be concluded that
diction on the chromatographic system considered. The ex-the MARS model is less easy to interpret than the CART
planatory variables used were the 266 molecular descriptorstrees.
also studied here. The final CART model was selected after In the literature, least squares univariate regression mod-
cost-complexity pruning of the maximal tree using a 10-fold els that use lo@ as a predictor variable, to predict kg
cross-validatiorf13]. Fig. 6 shows the selected optimal tree. on polybutadiene-coated alumina columns, are described
The nodes of the tree are numbered according to the ordef32,33] For the dataset studied here, the least squares uni-
of the tree growing. The splits, the average response valuesvariate regression model obtained with only Bdescribes
and the numbers of objects of the leaves are indicated. Thethe training set less good (RSS = 0.8664 &3d= 0.6975)
histograms represent the distribution of the response for thethan the MARS model does. The predictive properties of this
objects within each leaf. Each bar covers a specific rangeunivariate regression model, evaluated using leave-one-out
of logk,, values, with increasing retention towards the right cross validation are also worse (RMSECV = 0.8900 RAd
part of the histograms. This allows to see clearly the parti- = 0.6879).
tion in retention classes, i.e. low retention for nodes 6 and 7, Moreover, stepwise regressifd] was used in order to
intermediate for node 4 and long retention for node 5. Such include the descriptors with the highest correlation tokdgg
retention classes are not obtained for the MARS model. inan MLR model. The MLR model obtained uses five molec-
Inthe CART model, only three molecular descriptors were ular descriptors (log P, ATS3m, ATS7m, nOH: the number of
selected to describe the retention. The molecular descrip-hydroxyl functions, and SIC: structural information content,
tor selected first is the “hydrophobicity parameter Y which is a structural complexity measure). Both the descrip-
The other descriptors are the “hydrophilic factor” (H8D], tion of the training set (RSS = 0.5666 aRfl= 0.8706) and
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the leave-one-out cross validation predictive properties ofthe s . . : : : :
stepwise MLR model (RMSECV = 0.6145 aRd = 0.8519) o
have improved compared to the least squares univariate re- 4} .
gression model with only loB, but the MARS model still
performs better.

4.4. Additional MARS models

[e]-]

In accordance to the MLR models with only 1Bgwe
evaluated the performance of some simplified MARS mod-
els, using only lodg® or a small number of selected molec-
ular descriptors, to describe retention. Additionally, it was
researched whether it is useful to simplify the MARS mod- al ]
els by banning interactions between predictor variables, but
allowing quadratic terms of the basis functions. All models 2 s s . . . .
discussed below were created independently, which implies -2 - 0 1 2 3 4 8
that always, first a maximum MARS model is created, which Retention Observed
is then pruned back, al’?d ever.'tua"y the optimal model is se- Fig. 7. Predicted versus observed retention for all objects using cross-
lected. Analogously as in SectidiB, the models were evalu- validation for the MARS model obtained after feature selection by CART
ated using the residual sum of squares for the training data anda; dilevalol;O: test set;x: training set).
the leave-one-out cross validation to estimate the predictive
power for new molecules.

The MARS model created using only I&guses only three  tal of 18 descriptors is selected in the optimal model, which
terms (logky = 0.8705(lodP — 4)+ + 0.3292(1.694- log P)+ includes 37 interaction terms. The MARS model obtained de-
— 1.014) but performs worse than the model of &).(RSS scribes the training data better (RSS = 0.0693RA0.998)
= 0.8266 andR? = 0.725; RMSECV = 0.8538 anB? = than before, but uses more basis functions. The correlation co-
0.712). A model with six terms of 108, from which three efficient equals 0.9967. However, the predictive performance
are quadratic, describes the training data slightly better (RSSof the model (RMSECV = 0.3373 ari?f = 0.954) is worse
= 0.7847 and?? = 0.752), but its predictive performance is than that obtained without feature selectionFig. 7a, plot
worse (RMSECYV = 0.9476 arfé® = 0.675). of the predicted retention versus the observed is shown. The

MARS models with only the three most important molec- retention of each molecule is again predicted twice: ones as a
ular descriptors of Eq(6) as predictor variables were also test molecule during leave-one-out cross-validation and once
created. The other molecular descriptors, which all show an as a training set member. The prediction of dilevalol, when
importance below 10%, relative to I&)(Fig. 4), are not se- it is test sample, seems to be an outlier. After its elimina-
lected. The optimal model thus obtained uses eight termstion, the retention prediction of the other molecules becomes
and performs better than the models build with Fogs the better (RSS = 0.0697 arié® = 0.998; RMSECV = 0.1638
only predictor variable. RSS equals 0,578 € 0.868) and andR? = 0.989) than from the model without feature selec-
also the predictive power of the model is better (RMSECV = tion. However, for the latter MARS model dilevalol was not
0.6506 andrR? = 0.847). Compared to the model build starting detected as an outlier.
from all 266 molecular descriptors, both RSS and RMSECV A last possibility studied is the use of quadratic terms
are considerably higher, but the complexity of the model is instead of interactions between different predictors. Starting
much lower (model size = 8). from all 266 molecular descriptors, the optimal model uses

Since CART selects a number of molecular descriptors 43 terms, from which 5 are quadratic. Compared to the model
during the tree building for the prediction of retention classes, of Eq. (6), nine additional terms are included. Consequently,
it could also be used for feature selection. The CART method one could conclude that this model is not really simpler than
is known to be very efficientto evaluate a large number of pre- the original one. However, the model describes the training
dictor variables for the description of a given respofisy. data very good (RSS = 0.0745 aRél= 0.998) and the same
Since the screening of all possible predictors is much fastergoes for the prediction of the retention for new molecules
in CART than in MARS, it could be time saving and more (RMSECV = 0.1716 an&®? = 0.988).
efficient to perform feature selection by means of CART, One may conclude that feature selection of predictors with
prior to the MARS model building. The 32 molecular de- CART prior to MARS may be useful to improve the inter-
scriptors selected by CART as primary or surrogate splits in pretability of the MARS model, but it also may remove some
the model of Sectiond.3 were used to build a MARS model.  valuable predictors, which also may decrease the predictive
Independently from the previous MARS models, a new max- ability of the model. For the models built starting from all
imal MARS model was build. After pruning back the optimal data, we may conclude that the use of quadratic terms in-
model uses 48 basis functions to describe the retention. A to-stead of interactions may improve the model performance.

Retention Predeicted
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5. Conclusion [12] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification
and Regression Trees, Wadsworth, Monterey, CA, 1984.
The performance of the MARS methodology to construct 13! Eép duéhcj Pgrr]rrigh';tgliesAﬁzrs'ssDizgggnggi D.L. Massart, Y. Vander
QSRRs was evall_JaFed. The opumal MARS mc_>de| obtained [14] S. éeku’”C’ BR. Kowflski’ J. Chemom. 6 (1992) 199,
shows good predictive properties estimated with leave-one-[15) R. Todeschini, V. Consonni, Handbook of Molecular Descriptors,
out cross-validation and performs better than classical MLR. Wiley-VCH, Weinheim, 2000.
Moreover, the molecular descriptors selected in the MARS [16] A. Nasal, A. Bucinski, L. Bober, R. Kaliszan, Int. J. Pharm. 159
model are meaningful from a chromatographic point of view, __ (1997) 43. .
. . . [17] W.M. Meylan, P.H. Howard, J. Pharm. Sci. 84 (1995) 83.
The US? of CART for Va”a_‘ble sefleCtlon may be useful Sm?e [18] SRC, Interactive LogKow (KowWin) Demohttp://esc.syrres.com/
MARS is more computer intensive than CART. However, if interkow/kowdemo.htm
computing time is not the main concern, variable selection is [19] R. Todeschini, V. Consonni, Dragon Software version 1.1,
not advisable since valuable predictor variables may be lost. http://www.disat.unimib.it/chm/Dragon.htm N
The introduction of quadratic terms of single molecular de- [20] L.B. Kl_er, L.H. Hall, Molgcular Connectivity in Structure—Activity
. . . . . Analysis, Research Studies Press, Letchworth, 1986.
scriptors instead of |nteract|on§ between molecular deSCI‘Ip-[21] D. Bonchey, Information Theoretic Indices for Characterization
tors could also be useful to obtain better models and shouldbe 5 chemical Structures, Research Studies Press, Letchworth,
considered. Overall, it is concluded that MARS is a valuable 1983.
technique to build QSRRs. [22] E.V. Kostantinova, J. Chem. Inf. Comput. Sci. 36 (1997) 54.
[23] D. Bonchev, D.H. Rouvray (Eds.), Chemical Graph Theory—
Introduction and Fundamentals, Gordon and Breach, New York,
1991.
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