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Abstract

The multivariate adaptive regression splines (MARS) methodology was applied to build quantitative structure–retention relationships
(QSRRs). The response (dependent variable) in the MARS models consisted of the logarithms of the extrapolated retention factors (logkw) of
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3 structurally diverse drugs on a Unisphere PBD column, using isocratic elutions at pH 11.7. A set of 266 molecular descriptors w
redictor (independent) variables in the MARS model building. The optimal MARS model uses 34 basis functions to describe the
nd has acceptable predictive properties for new objects. The molecular descriptors included in the model describe hydrophobicity
ize, complexity, shape and polarisability. Some additional MARS models were created using alternative strategies. These incl
ith logP as the single predictor and models obtained with only the three most important molecular descriptors. The use of classifi

egression trees (CART) as feature selection technique for predictor variables used in the MARS model was also investigated. F
lso studied whether allowing quadratic terms instead of interaction terms might lead to better MARS models.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Reversed-phase high performance liquid chromatography
RPLC) is one of the most frequently used techniques to sep-
rate pharmaceutical mixtures. The enormous variety of sta-

ionary phases combined with a range of possible mobile
hase compositions makes RPLC suited for almost any sepa-
ation. However, the selection of an appropriate starting point,
.e. the initially selected chromatographic system, for further

ethod development has become a crucial time-consuming
tep in RPLC method development, since in general a trial-
nd-error approach is followed[1].

The building of retention prediction models may open the
ossibility to predict the retention and consequently the sep-

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.
E-mail address:yvanvdh@vub.ac.be (Y. Vander Heyden).

aration of mixtures in a given chromatographic system.
eral approaches for retention prediction in RPLC have
investigated, among which quantitative structure–reten
relationships (QSRRs) are the most popular[2]. In QSRR, a
model is built, in which the retention on a given chroma
graphic system is described as a function of solute (mo
lar) descriptors. The QSRR models described in the liter
usually apply multiple linear regression (MLR) methods,
ten combined with genetic algorithms for feature selec
[3-5]. Other frequently used approaches include artifi
neural networks[5,6] and partial least squares (PLS)[7].

Multivariate adaptive regression splines (MARS) i
multivariate non-parametric regression procedure, w
was proposed by Friedman[8]. The use of the MARS metho
in chemical studies was introduced by De Veaux et al.[9].
Later, MARS was successfully applied in a quantita
structure–activity relationship (QSAR) context by Nguy

021-9673/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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Cong et al.[10] and Lahsen et al.[11]. Since in QSAR and
QSRR, similar models are built to describe either biological
activity or chromatographic retention, MARS might also be
useful to construct QSRR models. The use of MARS to build
QSRR models may show some advantages compared to the
more traditionally used techniques like MLR and neural
nets. Probably, the largest advantage is the fact that MARS
is able to describe a given response (e.g. chromatographic
retention) starting from a large number of predictors (e.g.
molecular descriptors) from which the best are automatically
selected. Compared to neural nets and PLS, the MARS
models are easier to interpret, since the original variables can
be directly found in the resulting model and even interactions
between the variables are indicated. Thus, MARS is able
to build flexible models without the disadvantages of the
more ‘black-box’ methods, as PLS and neural networks are
sometimes called.

The aim of this study was to evaluate the use of the
MARS methodology in a QSRR context. MARS is ap-
plied to describe the chromatographic retention, on a given
chromatographic system, as a function of a set of molec-
ular descriptors. Additionally, the use of classification and
regression trees (CART)[12] for feature selection of the
predictors (i.e. molecular descriptors), prior to the applica-
tion of MARS is studied. It was also researched whether
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in a weighted sum to define the global model (Eq.(1)). This
model often contains too many basis functions, which leads
to overfitting. Therefore, the constructive phase is followed
by a pruning phase, in which some basis functions of the
overfitting model are deleted. This leads to a sequence of
consecutively smaller MARS models, from which the opti-
mal one is selected in a third step.

In the first step, a model is created by stepwise adding
basis functions. Each basis function covers a given domain
of the response variable. The basis functions in MARS con-
sist either of one single spline function or of the product
of two (or more) spline functions for different predictors.
The spline functions in MARS are piecewise polynomials,
i.e. left-sided (Eq.(2)) and right-sided (Eq.(3)) truncated
functions.

b−
q (x − t) = [−(x − t)]q+ =

{
(t − x)q, if x < t

0, otherwise
(2)

b+
q (x − t) = [+(x − t)]q+ =

{
(x − t)q, if x > t

0, otherwise
(3)

wheret is called the knot location;b−
q (x − t) andb+

q (x − t)
are spline functions describing the regions to the left and
the right of the givent; q indicates the power (>0) to which
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he introduction of quadratic terms instead of interact
ay lead to better models. A physicochemical expl

ion of the descriptors selected by MARS is also gi
nd the resulting MARS models are compared with
ART model obtained in a previous study on the s
ataset[13].

. Theory

.1. Multivariate adaptive regression splines

The MARS method is a local regression method that
series of local so-called basis functions to model com

non-linear) relationships[8]. The space of the predicto
s split into several (overlapping) regions in which so-ca
pline functions are fit. The global MARS model then cons
f the weighted sum of the local models:

ˆ = a0 +
M∑

m=1

amBm(x) (1)

hereŷ is the predicted response,a0 the coefficient of th
onstant basis function,Bm(x) themth basis function, whic
ay be a single spline function or a product (interaction

wo (or more) spline functions,am the coefficient of themth
asis function andM the number of basis functions includ

nto the model.
In general, the MARS methodology consists of three s

rst a constructive phase, in which basis functions are i
uced in several regions of the predictors and are com
he spline is raised; the subscript “+” indicates a valu
ero for negative values of the argument. An example o
raphical representation of a spline function can be fo

n Section4.1. The first step consists of a “two-at-a-tim
orward stepwise procedure which selects the best pa
pline functions in order to improve the model. Each
ontains one left-sided and one right-sided truncated
ion defined by a given knot location. Thus, initially the b
asis functions are added two by two in order to improve
escription of the training data. The algorithm used evalu
ll possible predictors, as well as all possible knot locat

or each predictor. The search for the best predictor and
ocation is performed in an iterative way. The predictor (k
ocation), which contributes most to the model, is sele
rst. Additionally, the algorithm checks at the end of e
teration whether the introduction of an interaction impro
he model. While in successive iterations the basis func
re introduced in the model as single additive compon

he interactions are expressed in the model as the prod
wo or more basis functions. The order of a MARS mo
ndicates the maximum number of basis functions that i
ct (e.g. in second-order MARS the interaction order o
plines is not higher than two). The iterative building pro
ure continues until a user-defined maximum number of

unctions (Mmax) is included. The value ofMmax should be
onsiderably larger than the optimal model sizeM* (typically
he order of magnitude ofMmax is twice the expected ma
itude ofM* ) [8]. This results in a model, which overfits t
esponse.

The second step in the MARS methodology consists
runing step. A “one-at-a-time” backward elimination p
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cedure is applied in which the basis functions with the lowest
contribution to the model are excluded. Thus, in this step, the
basis functions to be maintained in the final MARS model are
selected from the set of all candidate basis functions, used
in step 1. This pruning usually is based on the generalized
cross-validation (GCV) criterion, but other approaches exist,
such asn-fold cross validation[8]. The GCV parameter is
an adjusted residual sum of squares, in which a penalty for
the model complexity is incorporated. This criterion is used
to avoid an excessive number of spline functions in the final
model:

GCV(M) = 1

n

∑n
m=1(yi − ŷi)2

(1 − C(M)/n)2
(4)

wheren is the number of objects studied,yi the (experimental)
response for objecti, ŷi the predicted response for objecti
andC(M) a complexity penalty function, which is defined as:

C(M) = M + dM (5)

with M the number of non-constant basis functions (i.e. all
terms of Eq.(1) excepta0) in the MARS model andda user-
defined cost for each basis function optimisation. The higher
the costd gets, the more basis functions will be excluded. In
practice,d is increased during the pruning step in order to ob-
tain smaller models. Besides its use during the pruning step,
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More information about molecular descriptors can be
found in[15].

3. Experimental

The chromatographic data used were obtained from Nasal
et al. [16] and consisted of the logarithms of the extrap-
olated retention factors (logkw) for 83 basic drugs. The
data concern the retention in buffer/methanol mixtures on
a Unisphere PBD, a polybutadiene-coated alumina, column
at pH 11.7 using isocratic elution. The composition of the
methanol/aqueous buffer mobile phase ranged from 75:25 to
0:100 (v/v). To compare retentions, they were extrapolated to
0% organic modifier[16] and the logkw values thus obtained
are used.

In this study 266 0D, 1D and 2D theoretical descriptors
were used. The logP values of the substances were obtained
using the on-line interactive LogKow program of the Envi-
ronmental Science Center of Syracuse Research Corporation,
Syracuse, NY[17,18]. For all molecules, the geometrical
structure was optimised using Hyperchem 6.03 Professional
software (Hypercube, Gainesville, FL). Geometry optimisa-
tion was obtained by the molecular mechanics force field
method (MM+) using the Polak-Ribière conjugate gradient
a
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he increase in the GCV value caused by removing a var
rom the model is also used to evaluate the importance o
redictor variables in the final MARS model.

Eventually, the selection of the optimal model is p
ormed in a third step. The selection is based on an
ation of the predictive properties of the different mod
hich often are determined using cross-validation or a

ndependent test set.
Further details on MARS modelling are given in[8,14].

.2. Molecular descriptors

A molecular descriptor can be defined as the resu
logical and/or mathematical procedure, which transfo

hemical information encoded within a symbolic repres
ation of a molecule into a useful number (theoretical
criptor), or as the result of some standardized experi
experimental descriptor)[15]. The term “useful” means th
he resulting number might contribute to an understan
f molecular properties and/or can be used in a mod
redict properties of molecules. In the literature over 6
escriptors are described, and the number still grows[15]. A

urther classification of theoretical molecular descriptor
ased on the dimensionality of the molecular represent

rom which the descriptor is calculated[15]. One can dis
inguish zero-dimensional (0D), one-dimensional (1D), t
imensional (2D) and three-dimensional (3D) molecular
criptors, which are derived from the chemical formul
ubstructure list representation, a topological and geom
al representation, respectively.
lgorithm with a RMS gradient of 0.05 kcal/(Å mol) as stop
riterion. The Cartesian co-ordinates matrices of the a
ositions in the molecule, resulting from this geometr
epresentation, were used to calculate the molecular de
ors by the Dragon 1.1 software[19]. The following group
f descriptors were calculated: 56 constitutional descrip

15], 69 topological descriptors[20–24], 20 molecular wal
ounts[25], 21 Galvez topological charge indices[26], 96 2D
utocorrelations[27–29]and 3 empirical descriptors[15]. A

otal of 266 descriptors were used.
The MARS models were built using an in-house a

ithm, based on the original MARS method from Fri
an [8], written in Matlab 5.3.1 environment (The Ma
orks, Natick, MA). The extrapolated retention data w
sed as response to be modelled and the descripto
redictors.

. Results and discussion

.1. The MARS model

A total of 266 molecular descriptors were used as pre
or variables to build MARS models for the prediction of
xtrapolated retention factors (logkw). Since second-ord
ARS was applied, the basis functions of the models co
f linear and second-order splines.Mmax, the criterion to sto

he maximum model building was set to 100. During the p
ng step to obtain sequentially smaller models the genera
ross-validation criterion was alternated with 20-fold cro
alidation. From the set of models with different complex
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Fig. 1. RMSECV vs. model complexity: (a) for all predictors; (b) after fea-
ture selection by CART.

the optimal one was selected based on its predictive property
estimated using leave-one-out cross-validation.Fig. 1a shows
a plot of the root-mean-squared error of cross-validation
(RMSECV) versus the complexity for the pruned models.
The RMSECV shows a minimum (0.2231) for the model de-
fined by 37 basis functions. However, a smaller model was
selected as optimal, since it is less complex and shows a com-
parable RMSECV (0.2358). This optimal MARS model con-
tains 34 basis functions (Bi), including the constantB1, which
equals 1 (Eq.(6)):

logkw =
34∑
i=1

aiBi (6)

The basis functions represented byB1, B2, . . ., B34 as well
as their coefficientsai are given inTable 1. Several inter-
action terms are integrated in the model. The model con-
tains a constantB1 (=1) and 10 basis functions that are sin-
gle splines (B2, B3, B4, B5, B17, B18, B26, B29, B30 and
B32), defined by only one molecular descriptor. The other ba-
sis functions are second-order interactions of two molecular
properties.

As an example of a basis function in the model, consider
B2:

(

T q.
(
t
f for
a

Table 1
List of basis functionsBi of the MARS model and their coefficients,ai

Bi Definition ai

B1 1 −0.114
B2 (logP + 4)+ 0.834
B3 (logP− 4)+ 0.234
B4 (1 − nR06)+ 1.964
B5 (nR06− 1)+ 0.837
B6 (logP− 4)+ (GATS4p− 2.2340)+ 0.293
B7 (nR06− 1)+(0.1430− MATS5m)+ −1.210
B8 (nR06− 1)+(MATS5m− 0.1430)+ −85.34
B9 (nR06− 1)+(0.3360− ATS5v)+ −119.7
B10 (1 − nR06)+(0.2220− MATS4e)+ −2.557
B11 (1 − nR06)+(MATS4e− 0.2220)+ −48.36
B12 (logP− 4)+(X1A − 0.4330)+ 4.016
B13 (logP− 4)+(0.2890− MATS8e)+ 0.568
B14 (logP− 4)+(MATS8e− 0.2890)+ 3.803
B15 (logP− 4)+(−0.0060− MATS7p)+ 0.603
B16 (logP− 4)+(MATS7p + 0.0060)+ 1.571
B17 (2.6770− GATS1p)+ −1.558
B18 (GATS1p− 2.6770)+ −0.734
B19 (nR06− 1)+(ATS4m− 0.2540)+ 1.711
B20 (logP− 4)+(0.0320− JGI5)+ 8.260
B21 (GATS1p− 2.6770)+(1159.8− TPCM)+ −0.028
B22 (GATS1p− 2.6770)+(TPCM− 1159.8)+ −0.002
B23 (nR06− 1)+(JGI3− 0.5710)+ −1.406
B24 (2.6770− GATS1p)+(0.4520− ATS2m)+ 16.05
B25 (2.6770− GATS1p)+(ATS2m− 0.4520)+ 6.313
B26 (0.4170− ATS3m)+ −5.840
B27 (nR06− 1)+(1.3460− GATS7p)+ −9.633
B28 (ATS3m− 0.4170)+(PJI2− 0.8570)+ −17.64
B29 (0.7630− X0A)+ −6.969
B30 (X0A − 0.7630)+ −820.9
B31 (logP− 4)+(ATS5v− 0.3170)+ 1.676
B32 (MATS8p + 0.2580)+ −0.189
B33 (nR06− 1)+(MATS5e− 0.0540)+ −1.391
B34 (0.4170− ATS3m)+(ATS3e− 1.300)+ −443.9

Fig. 2. Graphical representation of the second term of Eq.(6) (=0.8344B2)
as a function of logP.
logP + 4)+ =
{

logP + 4, if log P > −4

0, otherwise

his means that, when logP > −4, the second term of E
6) is 0.8344 (logP + 4), otherwise it is 0 (Fig. 2). Since in
his example the logP values exceed the knot value (=−4)
or all molecules, the basis function is different from zero
ll objects.
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As an example of an interaction between two molecular
properties considerB6:

(logP − 4)+(GATS4p− 2.2340)+ =
{

(logP − 4)(GATS4p− 2.2340), if log P > 4 and GATS4p> 2.2340

0, otherwise

This means that, when logP > 4 and GATS4p > 2.2340,
the sixth term of Eq.(6) is 0.2933 (logP − 4) (GATS4p
− 2.2340), otherwise it is 0.

Note that for a given molecule some terms of the model
of Eq.(6) may equal 0, which means that those terms are not
used to describe its retention.

4.2. Interpretation of the MARS model

Fig. 3gives a graphical representation of the model struc-
ture, in which six main groups of basis functions can be dis-
tinguished. The groups indicated are defined based on the
predictor variables (i.e. the molecular descriptors) used in
the basis functions. Each group consists of one or two main
basis functions and their interactions. The molecular descrip-
tors used to differentiate between the six classes are the hy-
drophobicity parameter (logP); the number of six-membered
rings (nR06); the Geary autocorrelation coefficient of lag 1,
weighted by the atomic polarisabilities (GATS1p): the Broto-
M ture
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indication that the QSRR relationships obtained could be
meaningful.

The number of six-membered rings (nR06) is a count de-
scriptor that describes local chemical information in a way
that can be related to both the volume of a molecule and its
hydrophobicity. These both properties can be related to the
molecule’s chromatographic retention.

The descriptors GATS1p, ATS3m and MATS8p are auto-
correlation descriptors. The GATS1p and the MATS8p both
describe atomic polarisabilities, whereas the Broto-Moreau
autocorrelation coefficient of a topological structure of lag 3,
weighted on the atomic masses (ATS3m) describes the spatial
distribution of the atomic masses in the molecule. However,
the meaning of these descriptors from a practical point of
view is not always that evident. These descriptors are more
difficult to interpret directly in QSRR sense, but since they
describe the atomic polarisabilities and the atomic masses,
respectively, their selection could be understood. Polar in-
teractions are important in RPLC and the atomic masses are
related to the size and complexity of the molecules.
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d total
m om-
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w etit-
oreau autocorrelation coefficient of a topological struc
f lag 3, weighted on the atomic masses (ATS3m); the ave
onnectivity index chi-0 (X0A); and the Moran autocorre
ion − lag 8/weighted by atomic polarisabilities (MATS8
15,19]. Since basis functions may equal 0 for given obje
ne can define the size of a class based on the numb
olecules it describes. Thus, a given class only con

hose molecules for which one or more of its basis fu
ions are different from zero. The class defined by ATS3
he smallest and contains only 65 objects. The other cl
ontain either 77 (the class defined by MATS8p) or all,
3, objects (the classes defined by logP, nR06, GATS1p
nd X0A).

Fig. 4 gives a plot of the importance of the molecu
escriptors in the final MARS model, which is evalua
y the increase in the GCV value caused by removing
onsidered variables from the model. It can be obse
hat the hydrophobic properties (logP) are the most im
ortant in the MARS model, followed by nR06. The c

ribution of MATS5m is much less important, i.e. ab
0% of the importance of logP. The remaining molecu

ar descriptors used all have an importance less than
f logP. MARS models created with only the most i
ortant molecular descriptors ofFig. 4 are evaluated i
ection4.4.
The hydrophobicity parameter (logP) is selected as b

ng the most important parameter as may be expected
ydrophobic interactions are the most important me
isms to determine retention in reversed-phase liquid c
atography[1]. The fact that the MARS method sele

ogP out of more than 250 molecular descriptors, is
The selection of the average connectivity index c
X0A) can also be understood since it is a topological
criptor which is related to the molecular complexity, i.e.
olecular branching properties.
In the first class, eight interactions with logP are de

cribed, using six different molecular descriptors (GATS
1A, MATS8e, MATS7p, JGI5 and ATS5v). Since GATS
nd MATS7p both describe atomic polarisabilities, only
ifferent types of interactions with logPcan be distinguishe
he Geary autocorrelation descriptor GATS4p and the M
utocorrelation descriptor MATS7p describe the spatial a
orrelation of the atomic polarisabilities. MATS8e descr
he autocorrelation of the atomic electronegativities and
verage Randic connectivity index (X1A) describes mol

ar branching and complexity. The Galvez topological ch
ndex of order 5 (JGI5) is a descriptor proposed to eval
he global charge transfer in a given molecule.

In the second class, the interactions of nR06 are with
utocorrelation descriptors (MATS4e, MATS5e, MATS5
TS5v, ATS4m and GATS7p) describing spatial autoco

ation of atomic electonegativities (MATS4e and MATS5
tomic masses (MATS5m and ATS4m), atomic van der W
olumes (ATS5v) and atomic polarisabilities (GATS7p),
pectively. Only two molecular descriptors (i.e. ATS2m
PCM) are selected to interact with GATS1p (class 3).
roto-Moreau autocorrelation coefficient of a topolog
tructure of lag 2, weighted by the atomic masses (ATS
escribes the spatial distribution of the atomic mass. The
ultiple path count (TPCM) is proposed to describe the c
lexity of a molecule. Also 2 interactions can be obse
ith ATS3m (i.e. PJI2 and ATS3e) (class 4). The 2D P
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Fig. 3. Representation of the MARS model with the six classes of the basis functions.

jean shape index (PJI2), also called graph-theoretical shape
coefficient, is proposed to describe the topological aniso-
metry. This molecular shape descriptor describes the
degree of deviation from a perfect cyclic topology. The

F n the
M

Broto-Moreau autocorrelation coefficient of a topological
structure of lag 3, weighted on the atomic electronegativities
(ATS3e) describes the spatial distribution of the atomic
electronegativities in the molecule.

Finally the two last classes, defined by the average connec-
tivity index chi-0 (X0A) and by the Moran autocorrelation−
lag 8, weighted by atomic polarisabilities (MATS8p) do not
contain any interactions. MATS8p describes the spatial auto-
correlation of the atomic polarisabilities and X0A describes
the molecular branching of a molecule.

It can be concluded that the molecular properties selected
to interact with the most important parameters of the model
are not very easy to interpret, which often is intrinsic to their
nature. However, they always are related to molecular prop-
erties that are important in RPLC such as molecular size,
complexity and shape, polarisability and electronegativity.

4.3. Prediction properties of the MARS model compared
to CART and MLR models

In order to evaluate the model, the retention of each
molecule is predicted twice: once as part of the training set
and once it is selected as a test object in leave-one-out cross-
validation. The training set contains all 83 molecules and
their retention is described using the model of Eq.(6). Us-
i icted
ig. 4. Relative importance of the molecular descriptors selected i
ARS model.
 ng leave-one-out cross-validation each molecule is pred
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Fig. 5. Predicted versus observed retention for all objects, once using the
training set (×) and once using leave-one-out cross validation (©).

once as a test object in a MARS model where the coefficients
are determined based on the remaining 82 molecules.

The model of Eq.(6) describes the training set very well.
A low value of the residual sum of squares (RSS = 0.1273) is
obtained, the correlation coefficient is 0.9967 andR2 equals
0.994. The predictive properties of the MARS model, eval-
uated using leave-one-out cross validation are also accept-
able (RMSECV = 0.2358 andR2 = 0.978).Fig. 5 shows a
plot of the predicted versus the observed retention for both
the training data and the test set. From a practical point of
view these predictive values (for the test set) can be inter-
preted as a mean error equal to 13% of the real retention
(logk′

w).
In a previous study[13], classification and regression trees

[12] were used to build regression trees for the retention pre-
diction on the chromatographic system considered. The ex-
planatory variables used were the 266 molecular descriptors
also studied here. The final CART model was selected after
cost-complexity pruning of the maximal tree using a 10-fold
cross-validation[13]. Fig. 6shows the selected optimal tree.
The nodes of the tree are numbered according to the order
of the tree growing. The splits, the average response values
and the numbers of objects of the leaves are indicated. The
histograms represent the distribution of the response for the
objects within each leaf. Each bar covers a specific range
o ′ ight
p arti-
t d 7,
i uch
r .

ere
s crip-
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Fig. 6. The CART model obtained in[13] on the dataset used (Hy: hy-
drophilic factor; TPC: total path count).

representing hydrophilicity and the “total path count” (TPC)
[31], related to the molecular size.

Besides these molecular descriptors, CART also provides
lists of other important, so called, primary and surrogate vari-
ables[12,13]. The latter can be used when missing values
occur in the splitting variables.

All molecular descriptors selected in the MARS model,
with the exception of nR06, JGI5 and PJI2, were also se-
lected by CART as either primary or surrogate variables. The
logP is the main molecular descriptor both in MARS and
CART. The autocorrelation descriptors, frequently selected
by MARS were also found as surrogate and primary variables
in the CART model.

The predictions obtained by the CART model were less
good than with MARS since CART is only able to differen-
tiate between classes with low, intermediate and high reten-
tion, whereas the MARS model is a real regression model.
Moreover, the prediction power of the CART model could
only be evaluated as a misclassification rate. However, when
trying to link the selected theoretical descriptors with reten-
tion in a chromatographic system, it can be concluded that
the MARS model is less easy to interpret than the CART
trees.

In the literature, least squares univariate regression mod-
els that use logP as a predictor variable, to predict logkw
o ribed
[ uni-
v s
t
t this
u e-out
c d
=

o
i g
i lec-
u r of
h nt,
w crip-
t

f logkw values, with increasing retention towards the r
art of the histograms. This allows to see clearly the p

ion in retention classes, i.e. low retention for nodes 6 an
ntermediate for node 4 and long retention for node 5. S
etention classes are not obtained for the MARS model

In the CART model, only three molecular descriptors w
elected to describe the retention. The molecular des
or selected first is the “hydrophobicity parameter (logP)”.
he other descriptors are the “hydrophilic factor” (Hy)[30],
n polybutadiene-coated alumina columns, are desc
32,33]. For the dataset studied here, the least squares
ariate regression model obtained with only logP describe
he training set less good (RSS = 0.8664 andR2 = 0.6975)
han the MARS model does. The predictive properties of
nivariate regression model, evaluated using leave-on
ross validation are also worse (RMSECV = 0.8900 anR2

0.6879).
Moreover, stepwise regression[34] was used in order t

nclude the descriptors with the highest correlation to lokw
n an MLR model. The MLR model obtained uses five mo
lar descriptors (log P, ATS3m, ATS7m, nOH: the numbe
ydroxyl functions, and SIC: structural information conte
hich is a structural complexity measure). Both the des

ion of the training set (RSS = 0.5666 andR2 = 0.8706) and
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the leave-one-out cross validation predictive properties of the
stepwise MLR model (RMSECV = 0.6145 andR2 = 0.8519)
have improved compared to the least squares univariate re-
gression model with only logP, but the MARS model still
performs better.

4.4. Additional MARS models

In accordance to the MLR models with only logP, we
evaluated the performance of some simplified MARS mod-
els, using only logP or a small number of selected molec-
ular descriptors, to describe retention. Additionally, it was
researched whether it is useful to simplify the MARS mod-
els by banning interactions between predictor variables, but
allowing quadratic terms of the basis functions. All models
discussed below were created independently, which implies
that always, first a maximum MARS model is created, which
is then pruned back, and eventually the optimal model is se-
lected. Analogously as in Section4.3, the models were evalu-
ated using the residual sum of squares for the training data and
the leave-one-out cross validation to estimate the predictive
power for new molecules.

The MARS model created using only logPuses only three
terms (logkw = 0.8705(logP− 4)+ + 0.3292(1.694− logP)+
− 1.014) but performs worse than the model of Eq.(6) (RSS
= 2 2
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Fig. 7. Predicted versus observed retention for all objects using cross-
validation for the MARS model obtained after feature selection by CART
(a: dilevalol;©: test set;×: training set).

tal of 18 descriptors is selected in the optimal model, which
includes 37 interaction terms. The MARS model obtained de-
scribes the training data better (RSS = 0.0693 andR2 = 0.998)
than before, but uses more basis functions. The correlation co-
efficient equals 0.9967. However, the predictive performance
of the model (RMSECV = 0.3373 andR2 = 0.954) is worse
than that obtained without feature selection. InFig. 7a, plot
of the predicted retention versus the observed is shown. The
retention of each molecule is again predicted twice: ones as a
test molecule during leave-one-out cross-validation and once
as a training set member. The prediction of dilevalol, when
it is test sample, seems to be an outlier. After its elimina-
tion, the retention prediction of the other molecules becomes
better (RSS = 0.0697 andR2 = 0.998; RMSECV = 0.1638
andR2 = 0.989) than from the model without feature selec-
tion. However, for the latter MARS model dilevalol was not
detected as an outlier.

A last possibility studied is the use of quadratic terms
instead of interactions between different predictors. Starting
from all 266 molecular descriptors, the optimal model uses
43 terms, from which 5 are quadratic. Compared to the model
of Eq.(6), nine additional terms are included. Consequently,
one could conclude that this model is not really simpler than
the original one. However, the model describes the training
data very good (RSS = 0.0745 andR2 = 0.998) and the same
g ules
(

with
C er-
p me
v ictive
a all
d s in-
s ce.
0.8266 andR = 0.725; RMSECV = 0.8538 andR =
.712). A model with six terms of logP, from which three
re quadratic, describes the training data slightly better
0.7847 andR2 = 0.752), but its predictive performance
orse (RMSECV = 0.9476 andR2 = 0.675).
MARS models with only the three most important mol

lar descriptors of Eq.(6) as predictor variables were a
reated. The other molecular descriptors, which all sho
mportance below 10%, relative to logP (Fig. 4), are not se
ected. The optimal model thus obtained uses eight t
nd performs better than the models build with logP as the
nly predictor variable. RSS equals 0,5727 (R2 = 0.868) and
lso the predictive power of the model is better (RMSEC
.6506 andR2 = 0.847). Compared to the model build start

rom all 266 molecular descriptors, both RSS and RMSE
re considerably higher, but the complexity of the mod
uch lower (model size = 8).
Since CART selects a number of molecular descrip

uring the tree building for the prediction of retention clas
t could also be used for feature selection. The CART me
s known to be very efficient to evaluate a large number of
ictor variables for the description of a given response[12].
ince the screening of all possible predictors is much f

n CART than in MARS, it could be time saving and m
fficient to perform feature selection by means of CA
rior to the MARS model building. The 32 molecular
criptors selected by CART as primary or surrogate spl
he model of Section4.3, were used to build a MARS mod
ndependently from the previous MARS models, a new m
mal MARS model was build. After pruning back the optim

odel uses 48 basis functions to describe the retention.
oes for the prediction of the retention for new molec
RMSECV = 0.1716 andR2 = 0.988).

One may conclude that feature selection of predictors
ART prior to MARS may be useful to improve the int
retability of the MARS model, but it also may remove so
aluable predictors, which also may decrease the pred
bility of the model. For the models built starting from
ata, we may conclude that the use of quadratic term
tead of interactions may improve the model performan
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5. Conclusion

The performance of the MARS methodology to construct
QSRRs was evaluated. The optimal MARS model obtained
shows good predictive properties estimated with leave-one-
out cross-validation and performs better than classical MLR.
Moreover, the molecular descriptors selected in the MARS
model are meaningful from a chromatographic point of view.
The use of CART for variable selection may be useful since
MARS is more computer intensive than CART. However, if
computing time is not the main concern, variable selection is
not advisable since valuable predictor variables may be lost.
The introduction of quadratic terms of single molecular de-
scriptors instead of interactions between molecular descrip-
tors could also be useful to obtain better models and should be
considered. Overall, it is concluded that MARS is a valuable
technique to build QSRRs.
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33] R. Kaliszan, K. Ósmiałowski, J. Chromatogr. 506 (1990) 3.
34] D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong

Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Q
metrics: Part A, Elsevier, Amsterdam, 1997.

http://esc.syrres.com/interkow/kowdemo.htm
http://esc.syrres.com/interkow/kowdemo.htm
http://www.disat.unimib.it/chm/dragon.htm

	Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies
	Introduction
	Theory
	Multivariate adaptive regression splines
	Molecular descriptors

	Experimental
	Results and discussion
	The MARS model
	Interpretation of the MARS model
	Prediction properties of the MARS model compared to CART and MLR models
	Additional MARS models

	Conclusion
	References


